Publications

A full list of Kristina Haslinger’s publications can be found on GoogleScholar.

  1. Iacovelli R, Sokolova N, and Haslinger K#. (2022) Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in Escherichia coli. Biochemical Society Transactions 50:1315–28. doi:10.1042/BST20220218.2.
  2. Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, Egbert S, et al. (2022) MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Research. epub ahead of print. doi:10.1093/nar/gkac1049.3.
  3. Peng B, Zhang L, He S, Oerlemans R, Quax WJ, Groves MR, and Haslinger, K.#. (2022) Engineering a plant polyketide synthase for the biosynthesis of methylated flavonoids. preprint on bioRxiv. https://doi.org/10.1101/2022.10.02.510496
  4. Haslinger, K.*# & Schmidt, S.* (2022). Trendbericht Biochemie 2022: Späte Funktionalisierung mit Biokatalysatoren aus Naturstoffsynthesen. Nachrichten aus der Chemie 70(7-8), 62-65. https://doi.org/10.1002/nadc.20224127080
  5. Zhou, X., Suo, F., Haslinger, K.#, and Quax, W.J.# (2022). Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 14, 395. https://doi.org/10.3390/pharmaceutics14020395.
  6. Sagita, R., Quax, W. J., & Haslinger, K.# (2021). Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.649906.
  7. Haslinger, K.#, Hackl, T., & Prather, K. L. J.# (2021). Rapid in vitro prototyping of O-methyltransferases for applications in recombinant pathways in Escherichia coli. Cell Chemical Biology, 28. https://doi.org/10.1101/2020.08.27.258715
  8. Cleto, S., Haslinger, K., Prather, K. L. J., & Lu, T. K. (2021). Natural combinatorial genetics and prolific polyamine production enable siderophore diversification in Serratia plymuthica. BMC Biology, 19(1), 46. https://doi.org/10.1186/s12915-021-00971-z
  9. Haslinger, K., & Prather, K. L. J. (2020). Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microbial Cell Factories, 19(26). https://doi.org/10.1101/707828
  10. Haslinger, K., & Prather, K. L. J. (2017). Pathway towards renewable chemicals. Nature Microbiology, 2(12), 1580–1581. https://doi.org/10.1038/s41564-017-0071-9
  11. Haslinger, K.#, & Cryle, M. J.# (2016). Structure of OxyAtei : completing our picture of the glycopeptide antibiotic producing Cytochrome P450 cascade. FEBS Letters, 590(4), 571–581. https://doi.org/10.1002/1873-3468.12081
  12. Peschke, M.*, Haslinger, K.*, Brieke, C., Reinstein, J., & Cryle, M. J. (2016). Regulation of the P450 oxygenation cascade involved in glycopeptide antibiotic biosynthesis. Journal of the American Chemical Society, 138(21), 6746–6753. https://doi.org/10.1021/jacs.6b00307
  13. Brieke, C., Kratzig, V., Haslinger, K., Winkler, A., & Cryle, M. J. (2015). Rapid access to glycopeptide antibiotic precursor peptides coupled with cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics. Organic & Biomolecular Chemistry, 13(7), 2012–2021. https://doi.org/10.1039/c4ob02452d
  14. Brieke, C.*, Peschke, M.*, Haslinger, K., & Cryle, M. J. (2015). Sequential In Vitro Cyclization by Cytochrome P450 Enzymes of Glycopeptide Antibiotic Precursors Bearing the X-Domain from Nonribosomal Peptide Biosynthesis. Angewandte Chemie – International Edition, 54(52), 15715–15719. https://doi.org/10.1002/anie.201507533
  15. Haslinger, K., Redfield, C., & Cryle, M. J. (2015). Structure of the terminal PCP domain of the non-ribosomal peptide synthetase in teicoplanin biosynthesis. Proteins, 83(4), 711–721. https://doi.org/10.1002/prot.24758
  16. Haslinger, K.*, Peschke, M.*, Brieke, C., Maximowitsch, E., & Cryle, M. J. (2015). X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature, 521(7550), 105–109. https://doi.org/10.1038/nature14141
  17. Haslinger, K., Maximowitsch, E., Brieke, C., Koch, A., & Cryle, M. J. (2014). Cytochrome P450 OxyBtei Catalyzes the First Phenolic Coupling Step in Teicoplanin Biosynthesis. ChemBioChem, 15(18), 2719–2728. https://doi.org/10.1002/cbic.201402441
  18. Haslinger, K., Brieke, C., Uhlmann, S., Sieverling, L., Süssmuth, R. D., & Cryle, M. J. (2014). The Structure of a Transient Complex of a Nonribosomal Peptide Synthetase and a Cytochrome P450 Monooxygenase. Angewandte Chemie International Edition, 53(32), 8518–8522. https://doi.org/10.1002/anie.201404977
  19. Haslinger, K., Brieke, C., Uhlmann, S., Sieverling, L., Süssmuth, R. D., & Cryle, M. J. (2014). Die Struktur eines transienten Komplexes einer nicht-ribosomalen Peptidsynthetase mit einer P450-Monooxygenase. Angewandte Chemie, n/a-n/a. https://doi.org/10.1002/ange.201404977
  20. Cryle, M. J.#, Brieke, C., & Haslinger, K. (2013). Oxidative transformations of amino acids and peptides catalysed by Cytochromes P450. In E. Farkas & M. Ryadnov (Eds.), Amino Acids, Peptides and Proteins (38th ed., Vol. 38, pp. 1–36). Cambridge: The Royal Society of Chemistry. https://doi.org/10.1039/9781849737081

*authors contributed equally to this work
#corresponding author

%d bloggers like this: